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1. Use of Terms and Assumptions about Neurocognitive mechanisms  

 The experimental paradigm we used in the present study was designed to probe non-

automatic (“controlled”) semantic priming — specifically, semantic priming that is driven by 

relatively “implicit” probabilistic predictive mechanisms. Because we understand that terms like 

“automatic”, “controlled”, “strategic”, and “implicit” are used in different ways in the literature, 

here we clarify how we define these terms in the present study, as well as our assumptions about 

the neurocognitive mechanisms probed by our paradigm. 

 

“Automatic” versus “Controlled” Semantic Priming 

 “Automatic” semantic priming has been traditionally defined as semantic priming that is 

driven by mechanisms that do not require marked attention to the prime word itself, and that do 

not engage ‘top-down’ processing. The most commonly discussed automatic semantic priming 

mechanism is the automatic “spread of activation” across lexical and semantic networks (Neely, 

1977; Posner & Snyder, 1975). On this account, after encountering a prime word (e.g., “priest”), 

activity flows, in a bottom-up fashion, from the prime’s orthographic or phonological form (p-r-

i-e-s-t) to its lexical representation (e.g. PRIEST), and then to its semantic distributed features 

(the semantic features associated with <priest>). These representations, in turn, automatically 

spread activity to shared (directly associated) semantic features (e.g. the semantic features 

associated with <church>). This means that if a semantically associated target word, like 

“church”, appears very quickly after the prime, its processing is facilitated because its lexical 

representation and/or semantic features have already been activated, and so they are easier to 

access than if the target word was preceded by an unrelated prime word. 

 To capture this type of automatic spread of activation, the time interval between the onset 
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of the prime and the onset of the target (the Stimulus Onset Asynchrony, SOA) must be very 

short, and/or the prime word must be masked so that it is perceived under or just over the 

threshold of awareness (Marcel, 1983). In addition, participants should carry out tasks that 

encourage them to process the meaning of the target, rather than tasks like lexical decision that 

draw attention to the relationship between the prime and target.  

 In schizophrenia, the magnitude of the automatic semantic priming effect is usually same 

as in healthy controls (e.g., Barch et al., 1996; Blum & Freides, 1995; Chapin et al., 1992; Ober 

et al., 1995; Vinogradov et al., 1992). If, however, the relationship between the prime and target 

is indirect — that is, linked by an unstated mediator word (e.g. “priest” — [church] — “bell”) , 

the automatic semantic priming effect can be larger in people with schizophrenia than in healthy 

controls, particularly in patients with positive thought disorder (Kreher et al., 2009; Moritz et al., 

2001; Moritz et al., 2003; Spitzer et al., 1993; Weisbrod et al., 1998). This has been taken as 

evidence for an abnormally broad automatic spread of activity across semantic memory in 

schizophrenia. Recent evidence suggests that, rather than arising from an unconstrained, faster 

spread of automatic activation across semantic memory, as was originally hypothesized 

(Manschreck, Maher, Milavetz, Ames, Weisstein, & Schneyer, 1988), this broader automatic 

lexico-semantic activity in schizophrenia stems from looser mappings between the form and 

meaning of words (Kuperberg, Weber, Delaney-Busch, Ustine, Stillerman, Hämäläinen &  Lau, 

2019). 

 This type of “automatic” semantic priming can be contrasted with “controlled”  

mechanisms of semantic priming, which do require attention to the prime, and are 

conceptualized as being top-down in nature. They are thought to be engaged when the time 

interval between the onset of the prime and target is longer, and when the prime is unmasked. As 
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discussed in the main manuscript, under these experimental conditions, the semantic priming 

effect in schizophrenia is typically reduced (Pomarol-Clotet et al., 2008), and this has usually 

been attributed to impairments in top-down processing mechanisms (Barch et al., 1996; Barch & 

Ceaser, 2012). This reduced semantic priming has not been consistently associated with any 

specific symptom of schizophrenia, but rather appears to characterize schizophrenia as a whole. 

 As discussed in the main manuscript, two types of top-down “controlled” semantic 

priming mechanisms have been distinguished — proactive (prediction) and retroactive (semantic 

matching) (Neely, Keefe & Ross, 1989). The aim in the present study was to isolate the former 

mechanism — predictive semantic priming.  

 

“Implicit” versus “Strategic” predictive mechanisms 

 The original models of semantic priming equated “automatic” mechanisms of priming 

with “implicit” mechanisms, and “controlled” top-down mechanisms with explicit “strategic” 

processes. By “strategic”, what was usually mean was that participants were overtly aware of the 

mechanisms in which they were engaging to carry out the task, and that these mechanisms were 

intentional and conscious in nature (see Posner & Snyder, 1975). For example, top-down 

predictive semantic priming was assumed to involve the generation of a fixed “expectancy set” 

(a set of candidate targets related to the prime) after observing the prime word; then, upon 

presentation of the target, this expectancy set was serially searched for a word whose visual form 

matched the bottom-up input provided by the target word; in the event a match was found, 

recognition and/or processing was facilitated for the target (Becker, 1980). 

 More recent work, however, suggests that top-down predictive processing is not 

necessarily conscious and strategic in nature (although, of course, it can be subject to strategic 
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control). For example, there is growing understanding that predictive processes engaged during 

language comprehension are graded and probabilistic in nature (Federmeier & Kutas, 1999; 

DeLong, Urbach, & Kutas, 2005, Kutas, DeLong, & Smith, 2011, see Kuperberg & Jaeger, 2016 

for a review. These observations, along with evidence supporting the role of implicit statistical 

learning in language learning (Saffran, Newport, & Aslin, 1996) and processing/adaptation 

(Kleinschmidt & Jaeger, 2015), suggest that, even under non-automatic conditions, predictive 

processing is likely to be more implicit and probabilistic than previously assumed.  

   This conceptualization of probabilistic implicit prediction forms the basis for the 

theoretical framework we adopt in the present study, and it is exemplified by our probabilistic 

model of learning/adaptation. In the present paradigm, in heathy control participants, prediction 

under conditions of high predictive validity was possible because participants engaged in implicit 

statistical learning, enabling them to adapt to the statistical structure of the contextual 

environment, even though they were never told to do so. Thus, in the present paper, we 

emphasize the more implicit nature of predictive semantic priming in order to clarify that we do 

not assume that prediction was all-or-nothing or overtly strategic in nature. 

 

Relationship between probabilistic prediction in this semantic priming paradigm and during 

language comprehension  

 The probabilistic prediction mechanisms engaged during this semantic priming paradigm 

may not work in precisely the same ways as those engaged during natural language 

comprehension, which is obviously much more complex. However, one important advantage of 

this paradigm is that, by varying the proportion of predictable associated versus non-predictable 

unrelated trials within the broader contextual environment, we were able to encourage predictive 
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processes while holding the local semantic context on each individual trial constant. That is, 

trials in the lower predictive validity block had the same structure as in the higher predictive 

validity block; the only factor that varied between blocks was the relatedness proportion. This 

means that we cannot attribute any impairments observed in the schizophrenia group to 

impairments in processing the context itself (indeed, as discussed in the paper, the amplitude of 

the N400 evoked by the prime word did not differ between the patient and control group).  Thus, 

any reduction in the predictive priming effect in patient group cannot easily be attributed to 

deficits in holding information across delays in working memory, which might, in theory, 

contribute to impairments in using context during higher-level sentence and discourse 

comprehension. However, when thinking about the role of pro-active predictive mechanisms 

during higher-level language comprehension, it will be important to consider the role of working 

memory in maintaining information in the context over longer delays. 

 

 

2. Stimuli and Task 

 The materials used in this study were the same as those described by Weber, Lau, 

Stillerman, & Kuperberg (2016) and Lau, Gramfort, Hämäläinen, & Kuperberg (2013), which 

were very similar to the stimuli described by Lau, Weber, Gramfort, Hämäläinen, & Kuperberg 

(2016). Note that, while analyses in these previous studies focused on a smaller subset of stimuli, 

which were matched for lexical variables and counterbalanced across conditions, the analysis 

approach taken in the present study included all non-probe items and controlled for lexical 

variables by including them as covariates in our analyses.  However, for the purpose of 

visualization, a matched subset of stimuli described in the previous studies was used to generate 
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the waveforms shown in Figure 3A. Below we first describe the full set of stimuli that were used 

for analysis. We then summarize the subset of stimuli used to generate the waveforms in Figure 

3A. 

  Semantically associated word pairs (example: salt – pepper) were selected from the 

University of South Florida Association Norms (Nelson, McEvoy CL, & Schreiber, 2004).  All 

associated word pairs had a forward association strength (FAS) of .32 or higher (at least 32% of 

participants presented with the prime word responded with the target). All primes had been 

normed by at least 100 participants. Unrelated word pairs were created by shuffling the targets of 

related word pairs; the resultant unrelated prime-target pairs were then manually checked to 

ensure that no associated pairs had accidentally been created (FAS = 0).  

 The desired relatedness proportion in each block was achieved by varying the number of 

associated versus unrelated pairs in each block. The lower predictive validity block was 

composed of 360 unrelated prime-target pairs and 40 associated prime-target pairs. The higher 

predictive validity block was composed of 200 unrelated prime-target pairs and 200 related 

prime-target pairs. No word in any position was ever repeated in a given presentation list. The 

order of stimuli in each list was pseudorandomized within and across participants. All primes 

were presented in lowercase, for 500 ms; all targets were presented in uppercase, for 900 ms. 

There was a 100 ms blank screen between each prime and its target, such that the stimulus onset 

asynchrony between prime and target was 600 ms. Each trial was followed by a 200 ms fixation 

cross, and then a 200 ms blank screen. (See Figure 1 in the main manuscript for a diagram of the 

trial structure).  

  Participants’ task was to press a button every time they saw an animal word. For the 

purpose of this task, we included ‘animal probe’ prime-target pairs that contained animal words 
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(e.g., tiger): 50% of which were in the prime position and 50% of which were in the target 

position. None of these animal probe trials were included in the analyses for this study, and all 

were unrelated. In the lower predictive validity block, 80 of the 360 unrelated prime-target pairs 

were animal probe trials. In the higher predictive validity block, 80 of the 200 unrelated prime-

target pairs were animal probe trials.  

 As noted above, for the purpose of visualization, a matched subset of stimuli described in 

the previous studies was used to generate the waveforms shown in Figure 3A.  This matched 

subset of stimuli was organized in a 2 (Relatedness: associated, unrelated) x 2 (Block: lower 

predictive validity, higher predictive validity) design, with 40 word pairs in each of the four 

conditions. Note that these were the same set of stimuli that were used to carry out factorial 

analyses in our previous studies. These stimuli were matched across conditions for log frequency 

of the prime and log frequency of the target. The stimuli were also matched across blocks, within 

relatedness conditions, for forward association strength. Mean log frequency of the primes, for 

this subset was 2.55; mean log frequency of the targets was 3.53 (SUBTLEX; Brysbaert & New, 

2009). Mean forward association strength for the related word pairs was .65.  

 In the present study, we report EEG data from patients and controls. However, these data 

were collected in concert with MEG data, and as part of a larger multimodal study that also 

included an fMRI session using the same experimental design. The order of sessions (MEG/EEG 

vs. fMRI) was counterbalanced across subjects, and each participant saw a completely different 

set of items from session 1 to session 2, but the order of the sets and the recording modality in 

which they appeared (EEG-MEG/fMRI) was counterbalanced across participants.  
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3. Recruitment and Characterization of Participants 

People with a DSM-IV diagnosis of either schizophrenia or schizoaffective disorder were 

recruited from the Freedom Trail Clinic, which is based at the Lindemann Mental Health Center 

(Boston, MA, USA), an outpatient clinic and the dedicated Massachusetts General Hospital 

center for research and training in psychotic disorders. Diagnoses were confirmed with the 

Structured Clinical Interview for DSM–III-R (Spitzer, 1992), which was administered by a 

research psychiatrist. Of the 18 patients whose data we analyzed in the present study, 14 met 

criteria for diagnosis of schizophrenia, and the remaining 4 met criteria for a diagnosis of 

schizoaffective disorder. Demographically matched adult controls, without histories of 

psychiatric disorders (confirmed using an abbreviated version of the Structured Clinical 

Interview; Spitzer, 1992), were recruited by advertisement.  

Written consent was obtained following the guidelines of the Massachusetts General 

Hospital Human Subjects Research Committee. All participants were right-handed as assessed 

using a modified version of the Oldfield Handedness Inventory (Oldfield, 1971). All participants 

were native, primarily monolingual, American English speakers.  Participants were excluded if 

they had a history of neurological injury, medical disorders impairing neurocognitive function, or 

if they met DSM-IV criteria for substance abuse (within three months) or substance dependence.  

Patients symptoms were assessed on the day of the experiment, or on the day of a related 

fMRI study (within 1-2 weeks of this study). Symptoms were assessed using the Scale for the 

Assessment of Positive Symptoms (SAPS; Andreasen, 1984a), and the Scale for the Assessment 

of Negative Symptoms (SANS; Andreasen, 1984b). Assessments were completed by a single 

researcher who underwent extensive training in the administration of these scales and established 

at least 80% inter-rater agreement with scorers in other studies, based on videotaped interviews. 
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Global total scores were calculated for both the SAPS and SANS by summing global ratings for 

each symptom cluster.   

All patients were taking stable doses of antipsychotic medication. Two were prescribed 

typical antipsychotics, and 16 were prescribed atypical antipsychotics. One participant in the 

schizophrenia group was unable to report exact medication dosages; thus, the mean and standard 

deviation for chlorpromazine equivalents reported in Table 1 of the main manuscript are based 

on 17 of the 18 participants in the sample. Of the 18 patient datasets included for analysis in the 

present study, four were prescribed benzodiazepines, two were prescribed anticholinergics, five 

were prescribed SSRIs, and one was prescribed an injectable antipsychotic.  We refer the reader 

to Table 1 in the main manuscript for further details about the samples.  

 

 Subsequent exclusions of datasets from analysis 

 We originally collected data from 20 patients and 22 healthy adults. However, five 

datasets were subsequently excluded. One control dataset was excluded due to technical 

problems during the recording. One schizophrenia dataset was excluded due to poor performance 

in the behavioral task. One schizophrenia dataset and two control datasets were excluded due to 

excessive EEG artifact. Importantly, exclusions due to accuracy and artifact were based on a 

priori thresholds (Accuracy: hit rate <30%; Artifact: >30% of trials removed), and all analyses 

were carried out after these exclusions. 

 

 

4. Description of Computational Rational Adaptor Model  

As discussed in the main manuscript, we used a Bayesian model to probe differences 
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between people with schizophrenia and healthy control participants in the computational 

mechanisms by which they learned/adapted to the changed statistical structure of the contextual 

environment — the higher predictive validity of Block 2 following Block 1.  Below, we discuss 

this model in further detail.  First, we clarify the explanatory framework and terminology that we 

use throughout the paper in describing and interpreting this computational model. Second, we 

describe the main theoretical and mathematical principles that underlie the model.  

 

Explanatory Framework 

 The model that we use in the present study is described at Marr’s first level of analysis 

(the computational level; Marr, 1971). That is, it explicitly specifies the abstract principles of the 

computational problem to be solved, and the nature of its ideal solution — the probabilistic 

generative model that describes the beliefs attributed to a ‘rational’ agent (Anderson, 1990).  

 Rather than making strong claims about ‘rationality’, we see the main advantage of this 

type of model as allowing for explicit and precise formal descriptions of participants’ priors, 

likelihoods, and hypothesis spaces, which is necessary to be able to instantiate psychological 

theory (see Tauber, Navarro, Perfors & Steyvers, 2015 for discussion). Here, our model formally 

specified how participants updated their beliefs in light of new evidence, trial-by-trial, as they 

transitioned from environments of lower to higher predictive validity, and how they used these 

beliefs to generate probabilistic predictions about the target target, based on the prime. Using this 

model, we were able to show that the schizophrenia group was less likely than the control group 

to use these computational principles to influence a trial-by-trial measure of semantic processing 

(the N400) as they adapted to the higher predictive validity environment.  

 As noted in the main manuscript, no model specified at Marr’s first computational level 
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specifies either the precise algorithm or specific neural mechanisms that are actually used to 

solve the computational problem. It will therefore be important for future studies to specify 

practical algorithmic- or process-level inference algorithms to explain why patients failed to 

adapt, including algorithms that take into account limitations in cognitive resources (Anderson & 

Schooler, 1991; Sanborn, Griffiths, & Navarro, 2010; Griffiths, Lieder, & Goodman, 2015). It 

will also be important for future work to link these algorithms with precise neural mechanisms 

(see Yu & Cohen for an example of work that bridges across Marr’s computational, algorithmic 

and neural levels of explanation). 

 

Terminology 

 For this type of probabilistic model, there is a strong tradition in the Cognitive Sciences 

of using terms associated with agency (e.g. “confidence”, “hypothesis” and “belief updating”) to 

describe the underlying probabilistic computations. Crucially, this language is used even though 

the relevant cognitive processes are theorized to be unconscious or implicit (Perfors, Tenenbaum, 

Griffiths & Xu, 2011). Moreover, many researchers also adopt this terminology when describing 

neural computations within this framework. For instance, in Clark’s well-known “Whatever 

next? Predictive brains, situated agents, and the future of cognitive science” (Clark, 2013), brains 

can “guess”, “take on tasks”, “build models”, “make attempts”, “have confidence”, et cetera…. 

 Importantly, the use of this language does not imply that the brain literally “believes” or 

has “confidence”. Rather, as discussed by the philosopher, Daniel Dennett (the Intentional 

stance, 1971; capital ‘I’ to differentiate from a more general notion of intentionality),  ascribing 

beliefs and desires to the behavior of systems for which we do not know the precise functional 

design (like the brain), can allow us to better understand, explain, and predict the behavior of 
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these systems. See McGregor’s “The Bayesian stance: Equations for ‘as-if’ sensorimotor 

agency” (2017) for a recent in-depth discussion of how a Dennettian approach of this sort can be 

used to explain the behavior of physical and biological systems.   

 

 Rational probabilistic model of trial-by-trial adaptation 

 Full details of the model we used are given in Delaney-Busch, Morgan, Lau & 

Kuperberg, 2019. Here we describe its main principles.  

 To describe a participant’s beliefs about the probability of seeing an associated word pair 

versus an unrelated pair, the model assumes a beta-binomial distribution over trial types 

(associated, unrelated). The beta-binomial distribution is parametrized with a mean, µ, and a 

precision, ν. The mean parameter, µ, is used to estimate the probability with which a participant 

expects to receive an associated trial. The precision parameter (also known as the concentration 

parameter) describes the agent’s confidence in this belief, and its prior effectively determines 

how quickly participants adapt to a new experimental environment. It can be thought of as the 

“sample size”, or the weight given to the prior observations in ‘pseudocounts’. For example, if ν 

= 20, then participants give the same weight to 20 trials of new data as to their prior beliefs.  

  At the beginning of Block 2, we set a prior of µ = 0.1 — that is, we assumed that 

participants entered Block 2 with a belief that the parameters of the experiment would be the 

same as in Block 1, i.e., a 10% chance of receiving a related trial. Based on our previous study 

(Delaney-Busch, et al., 2019), we set a prior of 𝜈  = 77.  With µ = 0.1 and ν = 77, the beta prior at 

the beginning of Block 2 can alternatively be expressed in terms of the pseudocount 

parameterization, µ = 𝛼/(𝛼+𝛽) and 𝜈 = 𝛼+𝛽 — that is,  beta(7.7, 69.3), or 7.7 pseudocounts of 

related trials and 69.3 of unrelated trials.  After each new prime-target pair in Block 2, the beta 
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distribution describing the agent’s beliefs is updated using Bayes’ rule.  

 Using a mixture model, this dynamically changing belief about trial type (associated or 

unrelated) is then used to weight the relative influence of two sources of long-term knowledge to 

generate probabilistic predictions about the target: the Forward Association Strength (FAS) from 

the prime (Nelson et al., 2004), and target frequency, estimated from the SUBTLEX corpus 

(Brysbaert & New, 2009). Thus, the model yields an output estimate of the probability of 

encountering every target word in Block 2. This estimate of raw probability is then log-

transformed using the formula -log2[probability], which converts it into the information theoretic 

measure, surprisal (Shannon & Weaver, 1949). See Supplementary Figure 1 below for a 

schematic of the model calculations.  

 A trial-by-trial output yielded by this rational adaptor model is computed for all targets in 

Block 2 in each participant, taking into account that participant’s idiosyncratic history of 

associated and unrelated trials seen up to that point in the experiment. These trial-by-trial output 

values, in each participant, were then used as predictor variables in linear mixed effects 

regression analyses, which were designed to test the hypothesis that the model can explain 

human trial-by-trial N400s evoked by target words, measured over the course of Block 2.  

 



 

15 

 

Supplementary Figure 1. Schematic of computational model of trial-by-trial Bayesian updating, see Delaney-Busch, Morgan, Lau 
& Kuperberg (2019) for details. λi: Expected probability of encountering an associated word-pair at trial i. FAS: Forward 
Association Strength. Freq: word frequency. 

 

 

5. LMER Methods and Full Results 

 Below we give full results tables for the main linear mixed effects analyses (Supp. Tables 

1-3) and the linear mixed effects analyses which included premorbid verbal IQ (Supp. Tables 4-

6) are given below. All analyses were completed in R (R Core Team, 2016). For each analysis, 

we provide the model specification in R syntax, as well as the R command for running the 

analysis using packages lme4 version 1.1-21(Bates et al., 2015) and lmerTest version 3.1-0 

(Kuznetsova, Brockhoff, & Christensen, 2017). 
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 As noted in the manuscript, random intercepts for items and subjects were included in all 

models, as were random slopes for all predictors of interest that varied by item or by subject 

respectively. Note that, when a complex random effects structure is included in the model, often 

the regression analysis will not converge on an optimal solution. In the present study, we dealt 

with convergence issues by applying the following steps: (1) allowing for more iterations in the 

optimization algorithm (denoted by the optCtrl parameter in the lmer commands, see below), (2) 

changing the optimizer to the “bobyqa” optimizer provided by lme4 (Bates, et al., 2015; denoted 

by the optimizer parameter in the lmer commands, see below), and (3) excluding correlations 

between random intercepts and slopes from the model (denoted by the double-bar “||” notation in 

the model specifications, see below). All of the analyses reported in the present paper converged 

after applying these adjustments.  

 

Main LMER Results 

Higher Predictive Validity Block: Group*Relatedness 

 Estimate 

(mV) 

Std. Error t-value p-value Sig. 

(Intercept) -0.08 0.29 -0.29 0.78   

Group 0.53 0.41 1.27 0.21   

Relatedness 0.48 0.11 4.53 0.00 *** 

Concreteness 0.05 0.08 0.70 0.49   

Orthographic Neighborhood Size -0.15 0.10 -1.52 0.13   

Log Frequency 0.03 0.09 0.32 0.75   

Length 0.02 0.12 0.21 0.83   

Semantic Neighborhood Size -0.04 0.07 -0.60 0.55   

Group*Relatedness -0.38 0.15 -2.50 0.02 * 
      
      
Supplementary Table 1: Results of linear mixed effects model in Higher Predictive Validity Block, examining modulation of the 
N400 evoked by target word, by Relatedness and Group. See below for model specification in R syntax.  

N400_model = N400 ~ Group*Relatedness_Z + Concreteness_Z + OrthNeighb_Z +   

LogFreq_Z + Length_Z + SemNeighb_Z + (1 + Group*Relatedness_Z || Item) + (1 + 

Relatedness_Z || Group:Subject) 
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lmer(N400_model, HP_data, control=lmerControl(optimizer = 'bobyqa', optCtrl = list(10e4))) 

 

 

Lower Predictive Validity Block: Group*Relatedness 

 Estimate 

(mV) 

Std. Error t-value p-value Sig. 

(Intercept) 0.09 0.29 0.30 0.77   

Group 0.14 0.42 0.34 0.73   

Relatedness 0.28 0.12 2.37 0.02 * 

Concreteness -0.12 0.08 -1.60 0.11   

Orthographic Neighborhood Size -0.11 0.10 -1.11 0.27   

Log Frequency 0.14 0.09 1.64 0.10  

Length 0.02 0.10 0.20 0.84   

Semantic Neighborhood Size -0.16 0.07 -2.19 0.03 * 

Group*Relatedness -0.21 0.16 -1.27 0.21   
      
Supplementary Table 2: Results of linear mixed effects model in Lower Predictive Validity Block, examining modulation of the 
N400 evoked by target words, by Relatedness and Group. See below for model specification in R syntax. 

N400_model = N400 ~ Group*Relatedness_Z + Concreteness_Z + OrthNeighb_Z +   

LogFreq_Z + Length_Z + SemNeighb_Z + (1 + Group*Relatedness_Z || Item) + (1 + 

Relatedness_Z || Group:Subject) 

 

lmer(N400_model, LP_data, control=lmerControl(optimizer = 'bobyqa', optCtrl = list(10e4))) 

 

 

 
Effects of Bayesian Adaptor Model Output*Group (controlling for Relatedness*Group) 

 Estimate 

(mV) 

Std. Error t-value p-value Sig. 

(Intercept) 0.16 0.30 0.54 0.59   

Group 0.12 0.44 0.28 0.78   

Relatedness -0.06 0.23 -0.27 0.79   

Model Output -0.57 0.22 -2.60 0.01 ** 

Concreteness 0.07 0.08 0.85 0.39   

Orthographic Neighborhood Size -0.15 0.10 -1.49 0.14   

Log Frequency 0.02 0.09 0.20 0.85   

Length 0.03 0.12 0.22 0.82   

Semantic Neighborhood Size -0.06 0.07 -0.77 0.44   

Group*Relatedness 0.52 0.33 1.55 0.12   

Group*Model Output 0.93 0.31 3.02 0.00 ** 
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Supplementary Table 3: Results of linear mixed effects model in Higher Predictive Validity Block, examining modulation of the 
N400 evoked by target words by Model Output and Group. See below for model specification in R syntax. 

 

N400_Bayes_model = N400 ~ Group*Model_Output_Z + Group*Relatedness_Z + 

Concreteness_Z + OrthNeighb_Z + LogFreq_Z + Length_Z + SemNeighb_Z +  (1 + 

Model_Output_Z*Group || Item) + (1 + Model_Output_Z || Group:Subject) 

 

lmer(N400_Bayes_model, HP_data, control=lmerControl(optimizer ="bobyqa”), optCtrl = 

list(10e4)) 

 

 

LMER Results with Premorbid Verbal IQ as a Covariate 

Higher Predictive Validity Block: Group*Relatedness 

 Estimate 

(mV) 

Std. Error t-value p-value Sig. 

(Intercept) 0.02 0.30 0.07 0.94   

Group 0.29 0.46 0.64 0.53   

Relatedness 0.49 0.11 4.36 0.00 *** 

Concreteness 0.05 0.08 0.70 0.48   

Orthographic Neighborhood Size -0.15 0.10 -1.53 0.13   

Log Frequency 0.03 0.09 0.33 0.74   

Length 0.02 0.12 0.21 0.84   

Semantic Neighborhood Size -0.04 0.07 -0.60 0.55   

Verbal IQ -0.27 0.23 -1.17 0.25   

Group*Relatedness -0.40 0.17 -2.36 0.02 * 

Verbal IQ*Relatedness -0.03 0.09 -0.30 0.76   
      
      
Supplementary Table 4: Results of linear mixed effects model in Higher Predictive Validity Block, examining modulation of the 
N400 evoked by target word, by Relatedness and Group. Premorbid Verbal IQ (NAART; Blair & Spreen, 1989) included as a 
covariate. See below for model specification in R syntax. 

N400_model_IQ = N400 ~ Group*Relatedness_Z + Concreteness_Z + OrthNeighb_Z +   

LogFreq_Z + Length_Z + SemNeighb_Z +  IQ_Z*Relatedness + (1 + Group*Relatedness_Z || 

Item) + (1 + Relatedness_Z || Group:Subject) 

 

lmer(N400_model_IQ, HP_data, control=lmerControl(optimizer = “bobyqa”, optCtrl = 

list(10e4))) 
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Lower Predictive Validity Block: Group*Relatedness 

 Estimate 

(mV) 

Std. Error t-value p-value Sig. 

(Intercept) 0.06 0.31 0.20 0.84   

Group 0.20 0.47 0.41 0.68   

Relatedness 0.21 0.12 1.69 0.09 . 

Concreteness -0.12 0.08 -1.57 0.12   

Orthographic Neighborhood Size -0.11 0.10 -1.09 0.28   

Log Frequency 0.14 0.09 1.65 0.10 . 

Length 0.02 0.10 0.22 0.82   

Semantic Neighborhood Size -0.16 0.07 -2.19 0.03 * 

Verbal IQ 0.06 0.23 0.26 0.80   

Group*Relatedness -0.06 0.18 -0.33 0.74   

Verbal IQ*Relatedness 0.17 0.09 1.88 0.06 . 
      
Supplementary Table 5: Results of linear mixed effects model in Lower Predictive Validity Block, examining modulation of the 
N400 evoked by target words, by Relatedness and Group. Premorbid Verbal IQ (NAART; Blair & Spreen, 1989) included as a 
covariate. See below for model specification in R syntax. 

N400_model_IQ = N400 ~ Group*Relatedness_Z + Concreteness_Z + OrthNeighb_Z +   

LogFreq_Z + Length_Z + SemNeighb_Z + IQ_Z*Relatedness + (1 + Group*Relatedness_Z || 

Item) + (1 + Relatedness_Z || Group:Subject) 

 

lmer(N400_model_IQ, LP_data, control=lmerControl(optimizer = “bobyqa”, optCtrl = 

list(10e4))) 
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Effects of Bayesian Adaptor Model Output*Group (controlling for Relatedness*Group) 

 Estimate 

(mV) 

Std. Error t-value p-value Sig. 

(Intercept) 0.27 0.31 0.87 0.39   

Group -0.12 0.48 -0.26 0.80   

Relatedness -0.06 0.23 -0.27 0.79   

Model Output -0.60 0.22 -2.71 0.01 ** 

Concreteness 0.07 0.08 0.85 0.39   

Orthographic Neighborhood Size -0.15 0.10 -1.51 0.13   

Log Frequency 0.02 0.09 0.20 0.84   

Length 0.02 0.12 0.21 0.83   

Semantic Neighborhood Size -0.06 0.07 -0.77 0.44   

Premorbid Verbal IQ -0.28 0.22 -1.24 0.22   

Group*Relatedness 0.52 0.33 1.55 0.12   

Group*Model Output 0.99 0.31 3.14 0.00 ** 

Verbal IQ*Model Output 0.07 0.08 0.91 0.36   
      

Supplementary Table 6: Results of linear mixed effects model in Higher Predictive Validity Block, examining modulation of the 
N400 evoked by target words by Model Output and Group. Premorbid Verbal IQ (NAART; Blair & Spreen, 1989) included as a 
covariate. See below for model specification in R syntax. 

N400_Bayes_model_IQ = N400 ~ Group*Model_Output_Z + Group*Relatedness_Z + 

Concreteness_Z + OrthNeighb_Z + LogFreq_Z + Length_Z + SemNeighb_Z +  IQ_Z 

*Relatedness +  (1 + Model_Output_Z*Group || Item) + (1 + Model_Output_Z || 

Group:Subject) 

 

lmer(N400_Bayes_model_IQ, HP_data, control=lmerControl(optimizer ="bobyqa”, optCtrl = 

list(10e4)) 

 

 

 

6. Relationship between Symptoms and Semantic Priming 

We had no a priori hypotheses about what symptoms might correlate with the N400 semantic 

priming effect. As noted in Supplementary Materials, section 1, although thought disorder has 

been in some cases associated with enhanced automatic semantic priming, particularly to target 

words that are indirectly related to their preceding prime (Spitzer et al., 1993; Weisbrod et al., 

1998; Moritz et al., 2001; Moritz et al., 2003; Kreher, Goff, & Kuperberg 2009; Kuperberg et al., 
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2019), the reduced priming effect observed in schizophrenia under less automatic experimental 

conditions (using longer stimulus onset asynchronies between prime and target), such as in the 

present study, has not consistently been linked to any specific symptom of schizophrenia. 

Instead, it appears to characterize the schizophrenia group as a whole (for a review of the 

behavioral literature, see Pomarol-Clotet et al., 2008; for a review of the ERP literature, see 

Kuperberg, Kreher, & Ditman, 2010).  

 We also note that, even though our sample was suitably large to address the question we 

were interested in — whether there was a significant difference between the control and the 

patient group in predictive semantic priming — it was too small to find meaningful correlations 

with clinical measures. Nonetheless, for completeness, we conducted exploratory analyses to 

probe for potential relationships between clinical measures in the schizophrenia group and the 

effect of word pair relatedness (FAS) in the Lower and Higher Predictive Validity blocks. 

 We examined four clinical measures: chlorpromazine equivalent, SAPS (summed global 

ratings), SANS (summed global ratings), and Thought Disorder (SAPS, global rating), and we 

carried out two different regression analyses for each measure: one for the Lower Predictive 

Validity block and one for the Higher Predictive Validity block. The predictor of interest in each 

analysis was the interaction between Relatedness (FAS) and the clinical measure being 

investigated. The models included the same nuisance variables as in the main LMER analyses 

reported in the manuscript (Table 2, Supplementary Tables 1-3), but we note that the results did 

not change qualitatively (that is, no non-significant effects became significant) when these 

nuisance variables were dropped from the model. The random effects structure in each analysis 

consisted of by-subject and by-item intercepts; by-subject slopes for Relatedness; and by-item 

slopes for Relatedness, the clinical variable of interest, and the interaction between the two. 
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Convergence issues were dealt with in the same way as in the main analyses (see Supplementary 

Materials, section 5).  

We found no significant interactions between FAS and any of the clinical variables of 

interest, in either block (all ps > .142), suggesting that the N400 semantic priming effect was not 

modulated by any of these measures.  
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